Wireless developers have constantly improved technology by discovering new ways to transmit signals to users. These advances enable higher data rates and increasing range for each of these wireless technologies.
Different Wireless Technologies Pdf Download
Cellular wireless networks have come a long way since the first 1G system was introduced in 1981, with a new mobile generation appearing approximately every 10 years (Pathak 2013; Mishra 2018). In the past 30 years, the mobile industry has transformed society through 4 or 5 generations of technology revolution and evolution, namely 1G, 2G, 3G, and 4G networking technologies (Fig. 1). 1G gave us a mass-market mobile telephony. 2G brought global interoperability and reliable mobile telephony and made SMS text messaging possible. 3G gave us high-speed data transfer capability for downloading information from the Internet. 4G provided a significant improvement in data capability and speed and made online platforms and high-speed mobile internet services available for the masses. 5G technology will be the most powerful cellular wireless networks with extraordinary data capabilities, unrestricted call volumes, and infinite data broadcast (Pathak 2013; GSMA 2017; Mishra 2018).
The most used 5G technology is mmWave. Carriers will also be using a new spectrum in the sub-6 GHz WiFi region, low bands below 1 GHz, and existing 4G LTE bands, as shown in Fig. 2. At present, there is a significant amount of unused high-frequency spectrum, and the higher the frequency, the more bandwidth is available (Mathias 2019; Kamel et al. 2016). 5G networking technology also relies on different wave spectrums. Wireless networks are composed of cell sites divided into sectors that send data through radio waves. Fourth-generation (4G) Long-Term Evolution (LTE) wireless technology requires high-power, large cell towers to radiate signals over long distances. 5G wireless signals, on the other hand, will be transmitted via large numbers of multiple small cell stations located in places like light poles or building roofs. The use of a large number of small cells is necessary since 5G relies on millimeter wave spectrum between 30 and 300 GHz which can only travel over short distances and is subject to interference from weather and physical obstacles (Liu and Jiang 2016; De Matos and Gondim 2016; Hossain 2013).
Wi-Fi 6 is the latest wireless LAN technology and has been developed parallel with 5G and is expected to hit the market around the same time as 5G. Both technologies are designed to deliver similar services and have a core mission to bring gigabit-plus throughput to end-users.
The existing IoT technology solutions are facing challenges such as a large number of connections of nodes and security issues. In order to meet widespread applications and different industry demands, IoT will require improved performance criteria in areas such as security, trustworthiness, wireless coverage, ultra-low latency, and mass connectivity. 5G can improve processes in different stages of IoT architecture (Fig. 2). 5G can contribute to the future of IoT through the connection of billions of smart devices to interact and share data independently. 5G is considered as a key enabling technology that will play an important role in the continued success and widespread applications of IoT. 5G will introduce new Radio Access technologies (RAT), smart antennas, and make use of higher frequencies while altering or re-architecting networks. The 5G enabled IoT will help the connection of an enormous number of these IoT devices and will also help to meet market demands for wireless services. The fifth- generation (5G) mobile network will meet the differing prerequisites of the IoT. To meet the growing requirements of IoT, the Long-Term Evolution (LTE) and 5G technologies must provide new connectivity interfaces for future IoT applications. To meet the differing prerequisites of the IoT, 5G mobile networks must guarantee that massive devices and new services such as enhanced Mobile Broadband (eMBB), massive Machine Type Communications, Critical Communications, and Network Operations are effectively upheld. 5G provides essential prerequisites and ubiquitous connectivity for end-clients, including high throughput, low latency, fast information conveyance, high versatility to empower a huge number of gadgets, productive energy utilization systems, etc. The fifth-generation (5G) mobile network will improve the range of IoT applications such as smart TVs, smart security cameras, smart dishwashers, smart thermostats, smart kitchen appliances, and so on.
Additionally, during the past years, the use of additive manufacturing (AM) technologies in different industries have increased substantially. AM is used to produce products that can be customized individually. The technology offers several benefits to the manufacturing industry, including shorter production lead times, reduced time to market for new product designs, and faster response to customer demand (Attaran 2017a).
5G Wireless will also play a crucial role in a growing number of consumer electronics technologies and companies and will transform the fundamental ways industries conduct business. 5G wireless will enable companies to be on the growing side of the growth wave keeping their investors, customers, and workers happy. So, the very near future will be one of the most exciting times for business in our lifetimes, full of challenges, opportunities, and risks.
Use of equipment at radio frequencies is regulated by laws and international agreements. Technologies have been developed for peaceful coexistence. If wireless devices use these technologies to protect weather radars, their data transmission capabilities become limited, so it is tempting to violate the regulations. Hence, it is an important task for the worldwide weather community to involve themselves in the radio frequency management process and work in close contact with their national radio authorities to ensure that meteorological interests be duly taken into account in any decision-making process toward the future usage of wireless devices.
In addition to the U-NII devices, there are other devices that have been interfering with TDWRs. Most notable are wireless surveillance cameras with transmitter power higher than allowed for U-NIIs (Tuttle 2012). These devices, while not authorized in the TDWR band, can sometimes be easily tuned to different frequencies by the operator. This is a growing problem as video surveillance is expanding rapidly all over the world. 2ff7e9595c
Comentários